Los estándares para la práctica de las matemáticas

Los estándares para la práctica de las matemáticas describen la variedad de habilidades que los educadores de matemáticas a todos los niveles deben buscar desarrollar en sus estudiantes. Estas prácticas descansan en importantes “procesos y habilidades” con importancia trascendental en la educación matemática. Los primeros de estos son los procesos estándares del NCTM para solucionar problemas, razonando y comprobando, comunicación, representación y conexiones. Los segundos son los estándares de conocimientos especificados en el reporte del Consejo Nacional de Investigación “Adding It Up” (Sumándolo): razonamiento adaptativo, competencia estratégica, entendimiento conceptual (comprensión de conceptos matemáticos, operaciones y relaciones), fluidez en los procedimientos (destrezas para la realización de procedimientos de manera flexible, exacta, eficiente y apropiada), y una disposición productiva (la propensión a considerar que las matemáticas son sensatas, útiles e importantes, aunadas con la creencia en la rapidez y la eficacia propia).

1. Dan sentido a los problemas y perseveran en su resolución. 

2. Razonan de forma abstracta y cuantitativa.

3. Construyen argumentos viables y critican el razonamiento de otros.

4. Representación a través de las matemáticas

5. Utilizan las herramientas apropiadas estratégicamente.

6. Ponen atención a la precisión.

7. Reconocen y utilizan estructuras.

8. Reconocen y expresan regularidad en el razonamiento repetitivo.

 

1. Dan sentido a los problemas y perseveran en su resolución. 

Los estudiantes con buen dominio de las matemáticas 

comienzan por explicar el significado del problema y a buscar puntos de partida para su resolución. Analizan los elementos dados, las limitaciones, las relaciones y los objetivos. Realizan conjeturas sobre la forma y el significado de la resolución y planean una vía de resolución en lugar de realizar un intento apresurado. Consideran problemas análogos y analizan casos especiales y versiones más simples del problema original dándoles ideas para como poder resolverlo. Monitorean y evalúan su progreso y cambian de dirección si es necesario. Estudiantes de mayor edad pueden, dependiendo del contexto del problema, convertir expresiones algebraicas o modificar la ventana de la calculadora gráfica para obtener la información que necesitan. Los estudiantes con buen dominio de las matemáticas pueden explicar la correspondencia entre ecuaciones, descripciones verbales, tablas y gráficas, o dibujar diagramas de elementos y relaciones importantes, graficar datos, y buscar regularidades o tendencias.  

Estudiantes de menor edad pueden utilizar objetos concretos o imágenes que les ayuden a conceptualizar y resolver un problema. Los estudiantes con buen dominio de las matemáticas pueden verificar sus respuestas utilizando un método diferente y preguntarse continuamente: ¿Tiene sentido? Pueden entender los enfoques de otros para solucionar problemas complejos e identificar correspondencias entre diferentes enfoques. 

2. Razonan de forma abstracta y cuantitativa.

Los estudiantes con buen dominio de las matemáticas entienden las cantidades y como se relacionan dentro de un problema. Tienen dos habilidades complementarias que les ayudan a resolver problemas que involucran relaciones cuantitativas: la habilidad de descontextualizar – abstraer una situación dada y representarla simbólicamente, y manipular los símbolos representados como si éstos tuvieran vida propia, sin necesariamente prestar atención a sus referencias- y la habilidad de contextualizar, hacer pausas cuanto sea necesario durante el proceso de manipulación para comprobar las referencias para los símbolos involucrados. El razonamiento cuantitativo implica hábitos de la creación de una representación coherente del problema en mano, al considerar las unidades involucradas, poner atención al significado de las cantidades, no solamente como calcularlas; y conocer y utilizar con flexibilidad diferentes propiedades de las operaciones y objetos.

3. Construyen argumentos viables y critican el razonamiento de otros.

Los estudiantes con buen dominio de las matemáticas entienden y utilizan suposiciones, definiciones, y resultados previamente establecidos en la construcción de argumentos. Realizan conjeturas y construyen una progresión lógica de afirmaciones para explorar la veracidad de sus conjeturas. Son capaces de analizar las situaciones al dividirlas en casos, y pueden reconocer y utilizar contraejemplos. Justifican sus conclusiones, se las transmiten a otros, y responden a los argumentos de otras personas. Razonan de forma inductiva sobre datos, haciendo argumentos plausibles que tomen en cuenta el contexto del que se originaron dichos datos. 

Los estudiantes con buen dominio de las matemáticas también son capaces de comparar la efectividad de dos argumentos plausibles, distinguen una lógica o razonamiento correcto de otro que es erróneo, y -– en caso de haber un error en el argumento–– explican en qué consiste. Los estudiantes de educación primaria pueden construir argumentos utilizando referencias concretas como objetos, dibujos, diagramas, y acciones. Estos argumentos pueden tener sentido y ser correctos, aunque los mismos no se generalizan o se hacen formales hasta grados superiores. Más adelante, los estudiantes aprenden a determinar las áreas en las que un argumento aplica. Los estudiantes de todos los grados pueden escuchar o leer los argumentos de otros, decidir si tienen sentido y hacen preguntas útiles para clarificar o mejorar dichos argumentos. Los estudiantes construyen pruebas por inducción y pruebas por contradicción. CA

4. Representación a través de las matemáticas

Los estudiantes con buen dominio de las matemáticas pueden aplicar las matemáticas para resolver problemas de la vida cotidiana, la sociedad, y el trabajo. En los grados iniciales, esto puede ser tan simple como escribir una ecuación de suma para describir una situación. En los grados intermedios, es posible que un estudiante use razonamiento proporcional para planear un evento escolar o analizar un problema de la comunidad. En la preparatoria, un estudiante podrá usar la geometría para resolver un problema de diseño o usar una función para describir cómo una cantidad determinada depende de otra. Los estudiantes con buen dominio de las matemáticas que pueden aplicar lo que saben se sienten cómodos al desarrollar suposiciones y aproximaciones para hacer más simple una situación compleja, y entender que dichas suposiciones se pudieran revisar más tarde. 

Son capaces de identificar cantidades importantes en una situación práctica y expresar las relaciones usando herramientas como diagramas, tablas de doble entrada, gráficas, flow charts, y fórmulas. Pueden analizar matemáticamente dichas relaciones para sacar conclusiones. Interpretan rutinariamente sus resultados matemáticos dentro del contexto de la situación y analizan si los resultados tienen sentido, y posiblemente mejoran el procedimiento si éste no ha cumplido su propósito.

5. Utilizan las herramientas apropiadas estratégicamente.

Los estudiantes con un buen dominio de las matemáticas consideran las herramientas disponibles durante la resolución deproblemas matemáticos. Estas herramientas pueden incluir lápiz y papel, modelos concretos, una regla, un transportador, una calculadora, una hoja de cálculo, un sistema algebraico, un paquete estadístico, o un programa de geometría dinámica. Los estudiantes proficientes están suficientemente familiarizados con las herramientas apropiadas al nivel de grado o curso y pueden tomar decisiones acertadas para determinar si las herramientas son útiles en un momento dado y reconocen las limitaciones de las mismas. Por ejemplo, los estudiantes proficientes de la preparatoria analizan las gráficas de funciones y soluciones generados usando una calculadora gráfica. Detectan posibles errores estratégicamente a través de estimaciones y conocimientos matemáticos. Al realizar modelos matemáticos, saben que la tecnología puede ayudarlos a visualizar los resultados de las diversas suposiciones, explorar las consecuencias y comparar las predicciones con los datos. Los estudiantes proficientes en matemáticas de varios niveles de grados, pueden identificar recursos matemáticos relevantes y externos como el contenido digital en una página Web, y usarlos para plantear o resolver problemas. Son capaces de usar herramientas tecnológicas para explorar y profundizar su entendimiento de los conceptos.

6. Ponen atención a la precisión.

Los estudiantes proficientes en matemáticas tratan de comunicarse con precisión con otras personas. Tratan de usar definiciones claras durante un debate o en sus razonamientos propios. Comunican el significado de los símbolos que han elegido, incluyendo el uso del signo de igualdad apropiada y consistentemente. Son cuidadosos al especificar unidades de medición, y al etiquetar ejes para clarificar la correspondencia con las cantidades en un problema. Calculan correcta y eficientemente, expresan respuestas numéricas con un grado de precisión apropiado al contexto del problema. En los grados primarios, los estudiantes comparten explicaciones cuidadosamente formuladas. Cuando pasan a preparatoria ya han aprendido a examinar reclamaciones y hacer uso explícito de definiciones. 

7. Reconocen y utilizan estructuras.

Los estudiantes con buen dominio de las matemáticas miran con atención para distinguir patrones y estructuras. Los estudiantes menores, por ejemplo, pueden darse cuenta que tres y siete es la misma cantidad que siete y tres, o pueden organizar una colección de figuras de acuerdo a los lados que tengan. Más adelante, los estudiantes verán que 7 x 8 es igual a lo ya conocido 7 x 5 + 7 x 3, en preparación para aprender acerca de la propiedad distributiva. En la expresión x2 + 9x + 14, los estudiantes mayores pueden ver que 14 es 2 x 7 y que 9 es 2 + 7. Reconocen el significado de una línea que existe en una figura geométrica y pueden usar la estrategia de dibujar una línea auxiliar para resolver problemas. También pueden tomar un paso atrás para tener una visión general y un cambio de perspectiva. Pueden ver algo complejo, tal y como expresiónes algebraicas, como elementos individuales o como un compuesto de varios elementos. Por ejemplo, pueden ver 5 – 3(x – y)2 como 5 menos un número positivo multiplicando un/al cuadrado y usar esa información para darse cuenta que su valor no puede ser mayor que 5 para cualquiernúmero real x e y. 

8. Reconocen y expresan regularidad en el razonamiento repetitivo.

Los estudiantes proficientes en matemáticas pueden darse cuenta si los cálculos se repiten, y buscan tanto métodos generales como atajos/abreviados. Los estudiantes de grados superiores en la escuela primaria tal vez pueden darse cuenta que al dividir 25 entre 11, se repiten los mismos cálculos una y otra vez, y concluyen que hay un decimal que se repite. Al poner atención al cálculo de la pendiente al mismo tiempo que comprueban constantemente si los puntos pertenecen a una línea que pasa por el punto (1, 2) con la pendiente 3, los estudiantes de secundaria posiblemente podrán extraer la ecuación (y - 2) / (x - 1) = 3. Al notar la regularidad de la forma en que los términos se cancelan al ampliar (x-1) (x+1), (x-1) (x2 + x +1) y (x-1) (x3 + x2 + x +1) puede llevarlos a la fórmula general de la suma de una serie geométrica Al tratar de resolver un problema, los estudiantes proficientes en matemáticas, mantienen el control del proceso, mientras se ocupan de los detalles. Evalúan continuamente que tan razonables son sus resultados intermedios.

El conectar los estándares de las prácticas matemáticas con los estándares del contenido matemático. Los estándares de las prácticas matemáticas describen la manera en las cuales los estudiantes de la disciplina de las matemáticas, deberían involucarse en la materia a medida que adquieren madurez y experiencia en el campo de las matemáticas durante sus años de la escuela primaria, la escuela secundaria y la preparatoria. Los diseñadores de los planes de estudio, de las evaluaciones, y dela capacitación profesional deben tomar en cuenta la necesidad de conectar las prácticas matemáticas con el contenido matemático durante la enseñanza.Los estándares para el contenido matemático son una combinación equilibrada de procedimientos y entendimiento.

Las expectativas que comienzan con la palabra “entender” constituyen una buena oportunidad para relacionar la práctica con el contenido. Los estudiantes que no tienen un conocimiento amplio sobre un tema pueden depender demasiado de procedimientos. Si no tienen una base flexible que les ayude a trabajar, tendran menos posibilidades para resolver problemas analógicos, representar problemas coherentemente, justificar sus conclusiones, aplicar las matemáticas a situaciones prácticas, utilizar recursos tecnológicos conscientemente, explicar matemáticas a otros estudiantes, tener una visión general, o desviarse de un procedimiento conocido para encontrar una manera más sencilla. En resumidas cuentas, un estudiante que no tenga los conocimientos necesarios no podrá desenvolverse en las prácticas matemáticas.A este respecto, esos estándares de contenido que establecen expectativas de entendimiento son potencialmente “puntos de intersección” entre los Estándares del contenido matemático y los de Estándares para la práctica de las matemáticas. Estos puntos de intersección están basados en conceptos centrales y generativos dentro de los planes escolares para el estudio de matemáticas dignos de recibir el mérito del tiempo, recursos, energía innovadora, y el enfoque necesario y cualitativo para mejorar el plan de estudio, la enseñanza, la evaluación, la capacitación del profesorado, el aprovechamiento de los estudiantes en matemáticas.

® ©